

Area Seminar

Title Relativistic heavy-ion collisions and causal viscous hydrodynamics

Date and 10/07/2013 16:00:00
Time

Speaker Manu George
 Senior Research Fellow
 PRL, Ahmedabad

Area Theoretical Physics

Venue Room No. 469

Abstract

Relativistic heavy ion collisions set a platform to study the properties of matter at very high temperature ($T > 200$ MeV). The colour-deconfinement phase transition can occur at such a high temperature. This new phase of nuclear matter is called quark-gluon plasma(QGP), where quarks and gluons are no longer confined inside the hadronic volume, but move freely in a bigger volume occupied by the colliding nuclei. Relativistic hydrodynamic formalism is highly successful in describing space-time evolution of the particles produced in relativistic heavy ion collisions. One of the very important question to study in relativistic-heavy ion collision, is to accurately determine the viscosity of the strongly interacting matter. The relativistic Navier-Stokes equation is known to violates causality and gives unphysical behavior. Therefore one has to look for an alternate hydrodynamic description. One of the widely used such hydrodynamic description is due to Muller, Israel and Stewart. In this talk I will discuss about development of relativistic fluid dynamics up to second order.